

+

	TOTAL BILL OF MATERIAL									
	REMOVAL OF EXISTING STRUCTURE	UNCLASSIFIED STRUCTURE EXCAVATION	CLASS A CONCRETE	BRIDGE APPROACH SLABS	REINFORCING STEEL	PILE DRIVING EQUIPMENT SETUP FOR HP 12 X 53 STEEL PILES		l2 X 53 L PILES		
	LUMP SUM	LUMP SUM	CU.YDS.	LUMP SUM	LBS.	EA.	NO.	LIN.FT.		
SUPERSTRUCTURE										
END BENT 1			20.2		2,449	5	5	75.0		
END BENT 2			20.2		2,449	5	5	75.0		
TOTAL	LUMP SUM	LUMP SUM	40.4	LUMP SUM	4,898	10	10	150.0		

	TOTAL	BILL OF	MATERI	AL (CONTI	NUED)		
	VERTICAL CONCRETE BARRIER RAIL	RIP RAP CLASS II (2'-0" THICK)	GEOTEXTILE FOR DRAINAGE	ELASTOMERIC BEARINGS	PRES CONCRE	X 2'-0" TRESSED TE CORED LABS	A
	LIN.FT.	TONS	SQ.YDS.	LUMP SUM	NO.	LIN.FT.	
SUPERSTRUCTURE	140.3				10	700.0	
END BENT 1		80	90				
END BENT 2		90	100				
TOTAL	140.3	170	190	LUMP SUM	10	700.0	

S	DRAWN BY :	ATH	DATE : _	9-17
ЪС	DRAWN BY : CHECKED BY : DESIGN ENGINEER	JMJ	DATE :	9-17
٩	DESIGN ENGINEER	OF RECORD : JWJ	DATE : _	3-18
		•••••••••••••••••••••••••••••••••••••••		

GENERAL NOTES

ASSUMED LIVE LOAD = HL-93 OR ALTERNATE LOADING. THIS BRIDGE HAS BEEN DESIGNED IN ACCORDANCE WITH THE REQUIREMENTS OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS.

THIS BRIDGE IS LOCATED IN SEISMIC ZONE 1.

FOR OTHER DESIGN DATA AND GENERAL NOTES, SEE "STANDARD NOTES" SHEET.

FOR EROSION CONTROL MEASURES, SEE EROSION CONTROL PLANS.

THE EXISTING STRUCTURE CONSISTING OF (1) 25'-6"± TIMBER DECK ON STEEL I-BEAMS SPAN WITH A CLEAR ROADWAY OF 19'-1" ON TIMBER CAPS, TIMBER POSTS, CONCRETE SILLS AND TIMBER BULKHEADS AND LOCATED AT THE PROPOSED STRUCTURE SHALL BE REMOVED. FOR PARTIAL REMOVAL OF SILLS. SEE SHEET 1 OF 2.

REMOVAL OF THE EXISTING BRIDGE SHALL BE PERFORMED SO AS NOT TO ALLOW DEBRIS TO FALL INTO THE WATER. THE CONTRACTOR SHALL REMOVE THE BRIDGE AND SUBMIT PLANS FOR DEMOLITION IN ACCORDANCE WITH ARTICLE 402-2 OF THE STANDARD SPECIFICATIONS.

INASMUCH AS THE PAINT SYSTEM ON THE EXISTING STRUCTURAL STEEL CONTAINS LEAD, THE CONTRACTOR'S ATTENTION IS DIRECTED TO ARTICLE 107-1 OF THE STANDARD SPECIFICATIONS. ANY COSTS RESULTING FROM COMPLIANCE WITH APPLICABLE STATE OR FEDERAL REGULATIONS PERTAINING TO HANDLING OF MATERIALS CONTAINING LEAD BASED PAINT SHALL BE INCLUDED IN THE BID PRICE FOR "REMOVAL OF EXISTING STRUCTURE".

THE CONTRACTOR SHALL PROVIDE INDEPENDENT ASSURANCE SAMPLES OF REINFORCING STEEL AS FOLLOWS: FOR PROJECTS REQUIRING UP TO 400 TONS OF REINFORCING STEEL, ONE 30 INCH SAMPLE OF EACH SIZE BAR USED, AND FOR PROJECTS REQUIRING OVER 400 TONS OF REINFORCING STEEL, TWO 30 INCH SAMPLES OF EACH SIZE BAR USED. THE BARS FROM WHICH THE SAMPLES ARE TAKEN MUST THEN BE SPLICED WITH REPLACEMENT BARS OF THE SIZE AND LENGTH OF THE SAMPLE. PLUS A MINIMUM LAP SPLICE OF THIRTY BAR DIAMETERS. PAYMENT FOR THE SAMPLES OF REINFORCING STEEL SHALL BE CONSIDERED INCIDENTAL TO VARIOUS PAY ITEMS.

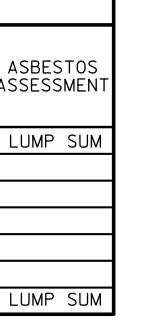
THE MATERIAL SHOWN IN THE CROSS-HATCHED AREA (ON SHEET 1 OF 2) SHALL BE EXCAVATED FOR A DISTANCE FROM THE CENTERLINE OF ROADWAY OF 23'± (LEFT) AND 29'± (RIGHT) AT END BENT 1 AND 28'± (LEFT) AND 23'± (RIGHT) AT END BENT 2, AND TO AN ELEVATION OF 577.0 AT END BENTS 1 AND 2 AS DIRECTED BY THE ENGINEER. THIS WORK WILL BE PAID FOR AT THE CONTRACT LUMP SUM PRICE FOR UNCLASSIFIED STRUCTURE EXCAVATION. SEE SECTION 412 OF THE STANDARD SPECIFICATIONS.

THIS STRUCTURE HAS BEEN DESIGNED IN ACCORDANCE WITH "HEC 18 - EVALUATING SCOUR AT BRIDGES".

THE SUBSTRUCTURE OF THE EXISTING BRIDGE INDICATED ON THE PLANS IS FROM THE BEST INFORMATION AVAILABLE. SINCE THIS INFORMATION IS SHOWN FOR THE CONVENIENCE OF THE CONTRACTOR, THE CONTRACTOR SHALL HAVE NO CLAIM WHATSOEVER AGAINST THE DEPARTMENT OF TRANSPORTATION FOR ANY DELAYS OR ADDITIONAL COST INCURRED BASED ON DIFFERENCES BETWEEN THE EXISTING BRIDGE SUBSTRUCTURE SHOWN ON THE PLANS AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

FOR SUBMITTAL OF WORKING DRAWINGS, SEE SPECIAL PROVISIONS.

FOR FALSEWORK AND FORMWORK, SEE SPECIAL PROVISIONS.


FOR CRANE SAFETY, SEE SPECIAL PROVISIONS.

FOR GROUT FOR STRUCTURES, SEE SPECIAL PROVISIONS.

ASPHALT WEARING SURFACE IS INCLUDED IN ROADWAY QUANTITY ON ROADWAY PLANS. FOR ASBESTOS ASSESSMENT FOR BRIDGE DEMOLITION AND RENOVATION ACTIVITIES, SEE SPECIAL PROVISIONS.

FOUNDATION NOTES

FOR PILES, SEE SECTION 450 OF THE STANDARD SPECIFICATIONS. PILES AT END BENT 1 ARE DESIGNED FOR A FACTORED RESISTANCE OF 100 TONS PER PILE. DRIVE PILES AT END BENT 1 TO A REQUIRED DRIVING RESISTANCE OF 167 TONS PER PILE. PILES AT END BENT 2 ARE DESIGNED FOR A FACTORED RESISTANCE OF 100 TONS PER PILE. DRIVE PILES AT END BENT 2 TO A REQUIRED DRIVING RESISTANCE OF 167 TONS PER PILE.

HYDRAULIC DATA

DESIGN DISCHARGE: _____ 900 CFS FREQUENCY OF DESIGN FLOOD: _____ 25 YRS. DESIGN HIGH WATER ELEVATION: _____ 580.8 DRAINAGE AREA: _____ 4.0 SQ. MI. BASE DISCHARGE (Q100): _____ 1,824 CFS BASE HIGH WATER ELEVATION: _____ 582.1

OVERTOPPING DATA


OVERTOPPING DISCHARGE: ______3,800 CFS FREQUENCY OF OVERTOPPING: _____ 500+ YRS. OVERTOPPING FLOOD ELEVATION: _____ 584.9

	PROJEC	CT NO.	E	3-5801	
		UNIC	N	CC	UNTY
	STATI	ON:	13+80	.00 -L	-
	SHEET 2 0	PF 2			
Docusigned av: CARO	DEPA		e of north car OF TRAN RALEIGH		TION
SEAL F. 11 038640	G	ENER	AL DF	RAWIN	NG
3/14/2018	(TR]	INITY	DGE ON CHURCH	HRD.)(DVER
STV ENGINEERS, INC. 900 West Trade St., Suite 715 Charlotte, NC 28202 NC License Number F-0991		LECAT NC 522	CREEK		
		REVIS			SHEET NO. S-2
MENT NOT CONSIDERED FINAL UNLESS ALL GNATURES COMPLETED	NO. BY: 1 2	DATE:	NO. ВҮ: З 4	DATE:	TOTAL SHEETS 13

										STRE	INGTH	I LIN	IIT ST	ΓΑΤΕ				SE	RVICE	III	LIMI	t sta	TE
										MOMENT					SHEAR						MOMENT		
LEVEL		VEHICLE	WEIGHT (W) (TONS)	CONTROLLING LOAD RATING	MINIMUM RATING FACTORS (RF)	TONS = W X RF	LIVELOAD FACTORS	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (ft)	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (ft)	LIVELOAD FACTORS	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (ft)
		HL-93(Inv)	N/A	1	1.006		1.75	0.273	1.03	70′	EL	34.5	0.507	1.32	70′	EL	6.9	0.80	0.273	1.01	70′	EL	34.5
DESIGN		HL-93(0pr)	N⁄A		1.341		1.35	0.273	1.34	70′	EL	34.5	0.507	1.72	70′	EL	6.9	N⁄A					
LOAD RATING		HS-20(In∨)	36.000	2	1.306	47.02	1.75	0.273	1.34	70′	EL	34.5	0.507	1.65	70′	EL	6.9	0.80	0.273	1.31	70′	EL	34.5
RATING		HS-20(0pr)	36.000		1.74	62.64	1.35	0.273	1.74	70′	EL	34.5	0.507	2.14	70′	EL	6.9	N/A					
		SNSH	13.500		2.917	39.379	1.4	0.273	3.75	70′	EL	34.5	0.507	4.87	70′	EL	6.9	0.80	0.273	2.92	70′	EL	34.5
		SNGARBS2	20.000		2.187	43.741	1.4	0.273	2.81	70′	EL	34.5	0.507	3.47	70′	EL	6.9	0.80	0.273	2.19	70′	EL	34.5
		SNAGRIS2	22.000		2.077	45.69	1.4	0.273	2.67	70′	EL	34.5	0.507	3.23	70′	EL	6.9	0.80	0.273	2.08	70′	EL	34.5
		SNCOTTS3	27.250		1.452	39.565	1.4	0.273	1.87	70′	EL	34.5	0.507	2.43	70′	EL	6.9	0.80	0.273	1.45	70′	EL	34.5
	S S	SNAGGRS4	34.925		1.218	42.554	1.4	0.273	1.57	70′	EL	34.5	0.507	2.03	70′	EL	6.9	0.80	0.273	1.22	70'	EL	34.5
		SNS5A	35.550		1.191	42.346	1.4	0.273	1.53	70′	EL	34.5	0.507	2.06	70′	EL	6.9	0.80	0.273	1.19	70′	EL	34.5
		SNS6A	39.950		1.095	43.747	1.4	0.273	1.41	70′	EL	34.5	0.507	1.88	70′	EL	6.9	0.80	0.273	1.10	70′	EL	34.5
LEGAL		SNS7B	42.000		1.043	43.801	1.4	0.273	1.34	70′	EL	34.5	0.507	1.85	70′	EL	6.9	0.80	0.273	1.04	70'	EL	34.5
LOAD RATING		TNAGRIT3	33.000		1.336	44.087	1.4	0.273	1.72	70′	EL	34.5	0.507	2.23	70′	EL	6.9	0.80	0.273	1.34	70′	EL	34.5
NATING		TNT4A	33.075		1.342	44.401	1.4	0.273	1.72	70′	EL	34.5	0.507	2.17	70′	EL	6.9	0.80	0.273	1.34	70′	EL	34.5
		TNT6A	41.600		1.1	45.746	1.4	0.273	1.41	70′	EL	34.5	0.507	1.98	70′	EL	6.9	0.80	0.273	1.10	70′	EL	34.5
	ST	TNT7A	42.000		1.106	46.462	1.4	0.273	1.42	70′	EL	34.5	0.507	1.94	70′	EL	6.9	0.80	0.273	1.11	70′	EL	34.5
		TNT7B	42.000		1.147	48.18	1.4	0.273	1.47	70′	EL	34.5	0.507	1.8	70′	EL	6.9	0.80	0.273	1.15	70′	EL	34.5
		TNAGRIT4	43.000		1.089	46.838	1.4	0.273	1.4	70′	EL	34.5	0.507	1.74	70'	EL	6.9	0.80	0.273	1.09	70′	EL	34.5
		TNAGT5A	45.000		1.026	46.175	1.4	0.273	1.32	70′	EL	34.5	0.507	1.74	70′	EL	6.9	0.80	0.273	1.03	70′	EL	34.5
		TNAGT5B	45.000	3	1.013	45.579	1.4	0.273	1.3	70′	EL	34.5	0.507	1.66	70′	EL	6.9	0.80	0.273	1.01	70′	EL	34.5

i6 :						
3/14/2018						
	ASSEMBLED BY : _		4TH		_ DATE :	9-17
	CHECKED BY :		JMN		_ DATE :	9-17
S	DESIGN ENGINEER	OF RECOF	RD :	JMJ	_ DATE :	3-18
Juones	DRAWN BY : CVC CHECKED BY : DNS	6/10 6/10				

LRFR SUMMARY

FOR SPAN `A'

+

+

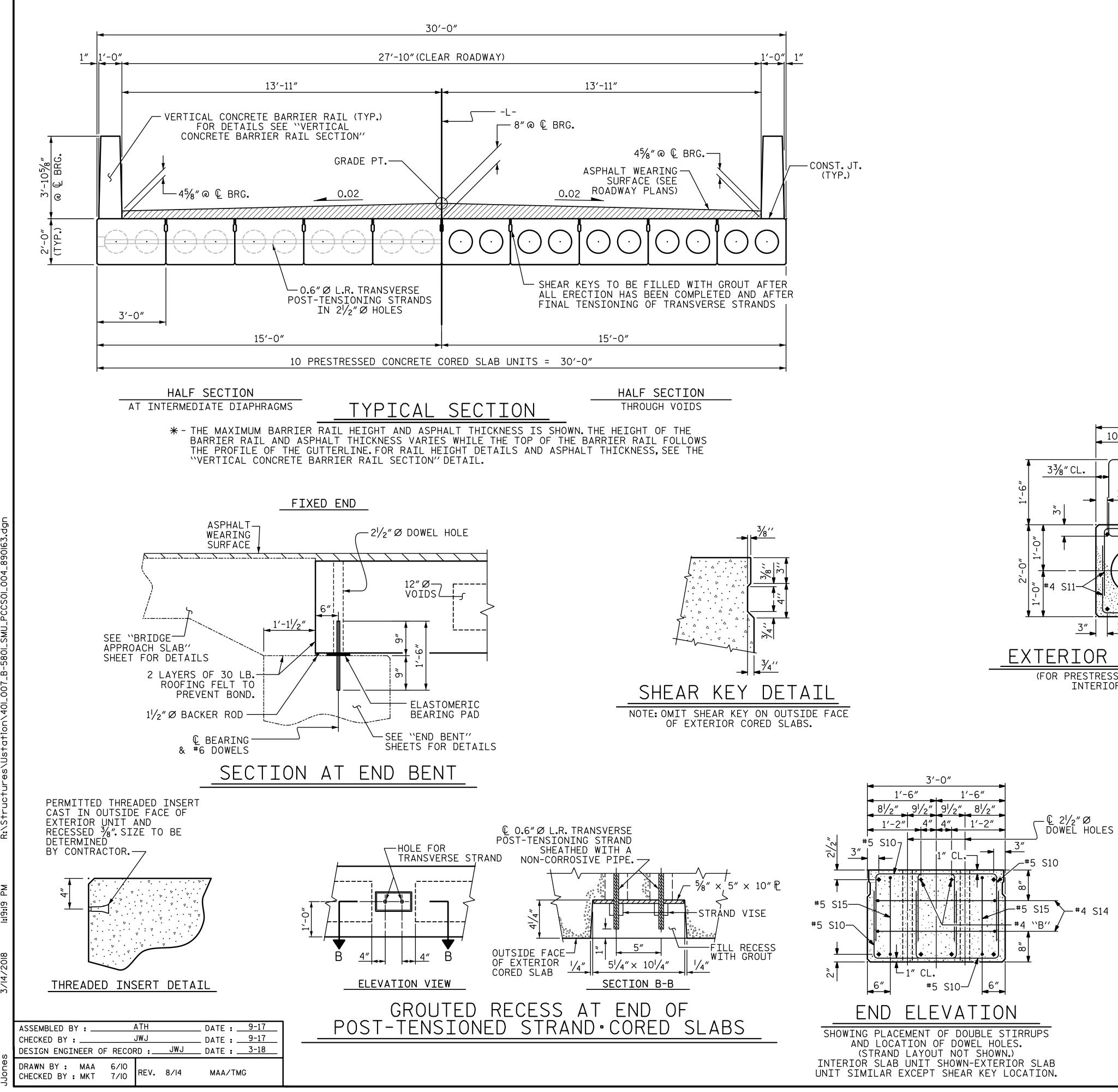
LOAD FACTORS:

DESIGN	LIMIT STATE	γ_{DC}	$\gamma_{\sf DW}$
LOAD RATING	STRENGTH I	1.25	1.50
FACTORS	SERVICE III	1.00	1.00

NOTES:

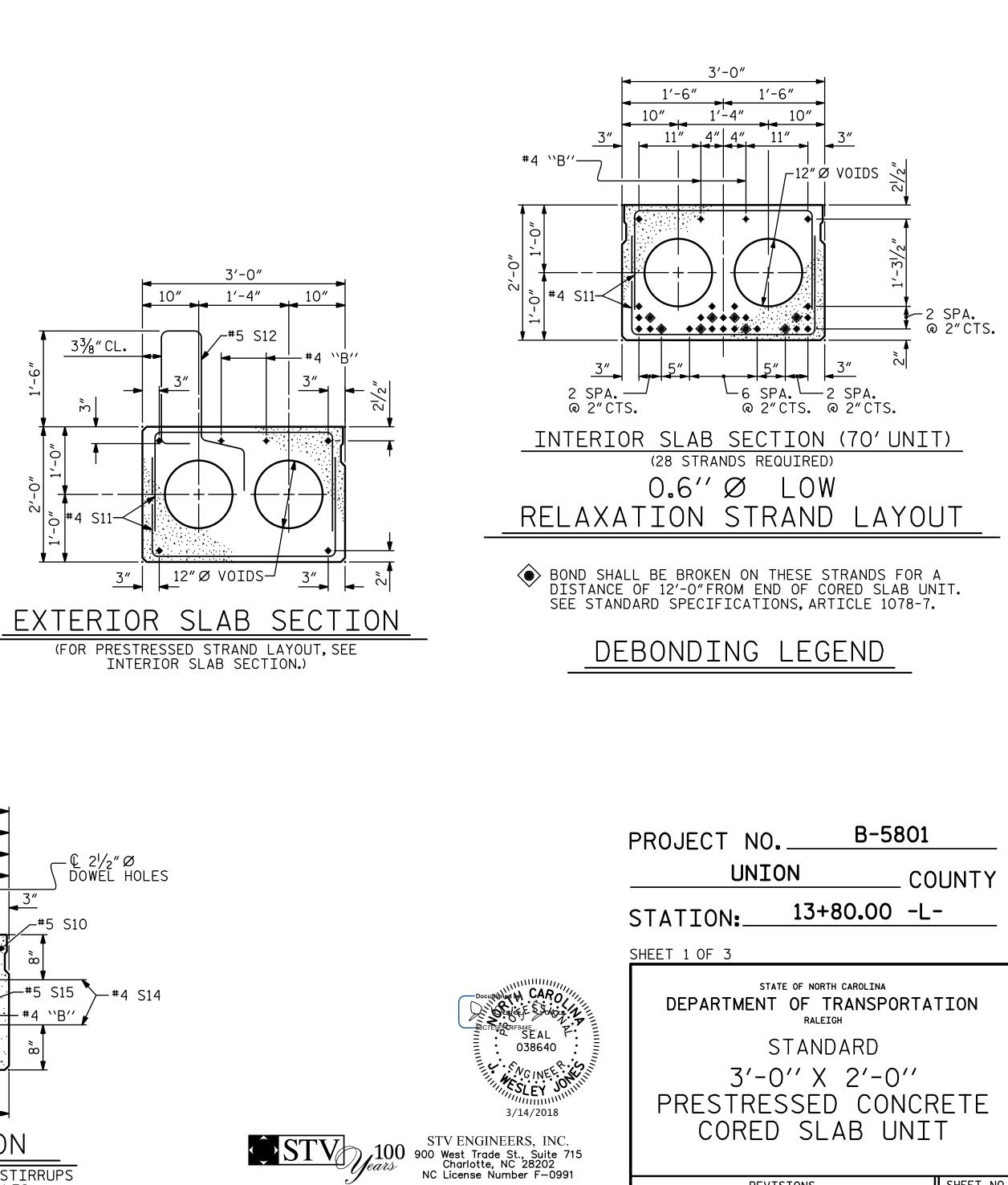
Ц

Ē

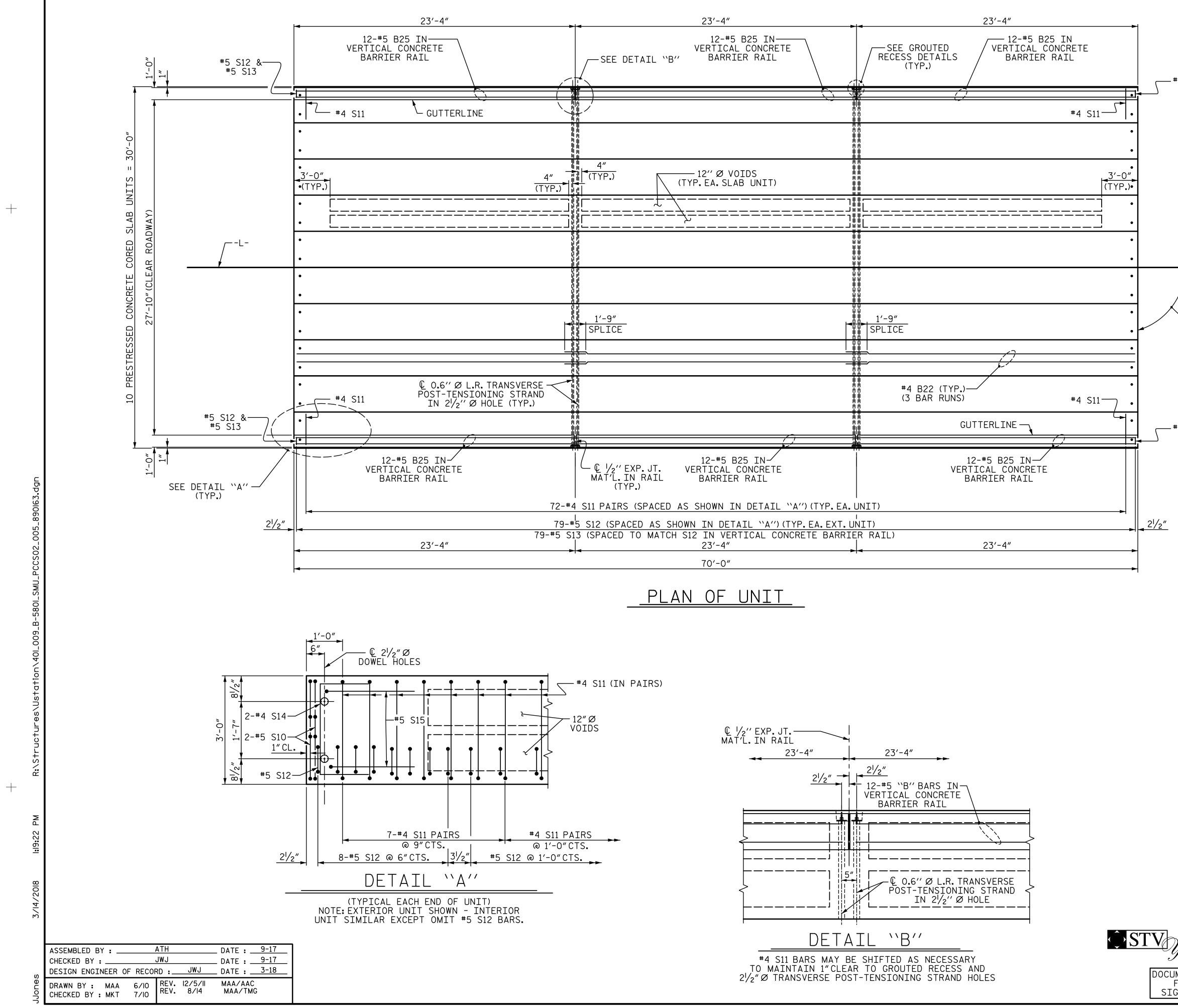

ſENT

COM

MINIMUM RATING FACTORS ARE BASED ON THE STRENGTH I AND SERVICE III LIMIT STATES. ALLOWABLE STRESSES FOR SERVICE III LIMIT STATE ARE AS REQUIRED FOR DESIGN.


34.5						
34.5	COMMEN	rs:				
34.5	1.					
34.5	2.					
34.5	3.					
34.5	4.					
34.5						
34.5						
34.5						
34.5						
34.5		(#) CO	NIROLL	ING LOAD	RAIING	
34.5			IGN LOAD F	RATING (HL-93)		
34.5			IGN LOAD F	RATING (HS-20)		
34.5	_					
34.5 34.5			AL LOAD RA	OR VEHICLE T		
J-1.J						
			GIRDEF	R LOCATIO	N	
		I - IN	NTERIOR GI	RDER		
				FT GIRDER		
		ER - EX	(TERIOR RI	GHT GIRDER		
			PROJE	CT NO	B-5801	L
				UNION		
						OUNTY
			STATI	ON: 13-	+80.00 -L	-
		ARO			RTH CAROLINA	
	BECTESED4F844E	\$60,2.4	DEPA	RTMENT OF	IRANSPOR I / EIGH	AILON
	0386	AL 7. 1			DARD	
	NGIN NGIN	VEEP. S		RER SUM	MARY F	
	0386 03 0386 0	1000000 18	(0)	CORED 90	SLAB L	JNIT
	STV ENGINEERS,	INC.		90 N-INTERST		FTCI
V Jears	900 West Trade St., Si Charlotte, NC 282 NC License Number F	uite 715 202				
DOCUMENT	NOT CONSIDERED		NO. BY:	REVISIONS DATE: NO.	BY: DATE:	SHEET NO
FINAL	UNLESS ALL RES COMPLETED		1	3		TOTAL SHEETS
			2	4		13

STD.NO.24LRFR1_90S_70L


5+ructures/Ustation/400.007_B-5800_SMU_PCCS00_004_89063.

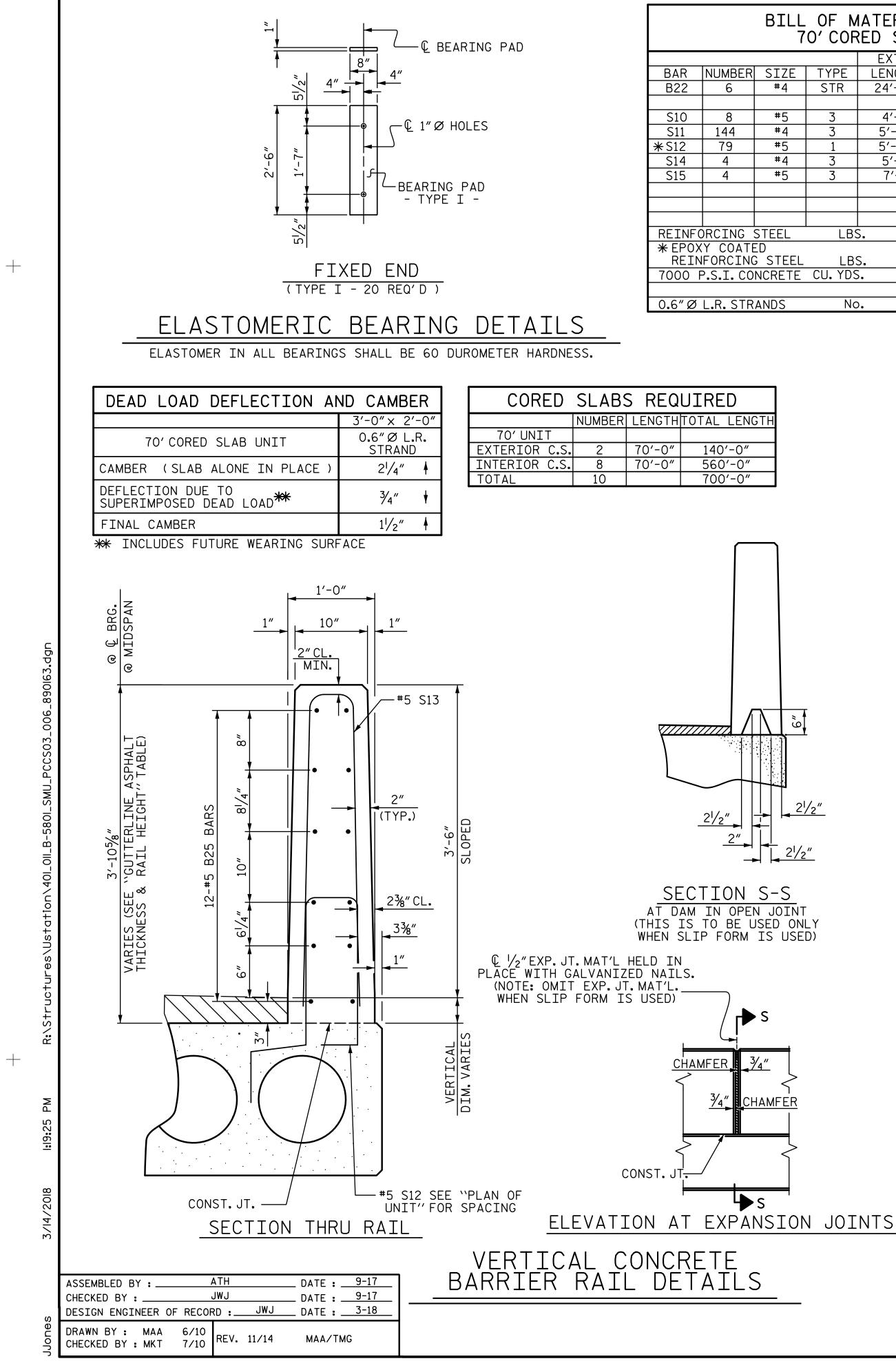
+

	SHEET NO.					
NO.	BY:	DATE:	N0.	BY:	DATE:	S-4
1			3			TOTAL SHEETS
2			4			13

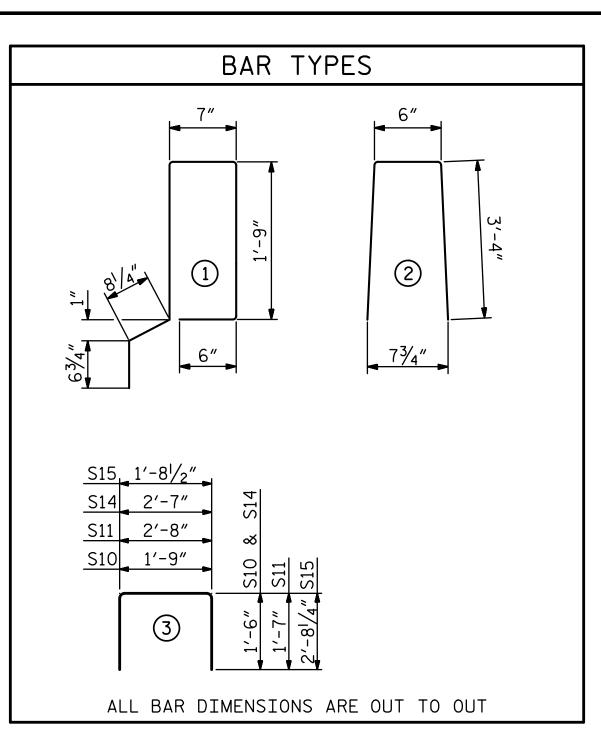
_____#5 S12 & ______#5 S13

∽ 90°-00′-00′′ (TYP.)

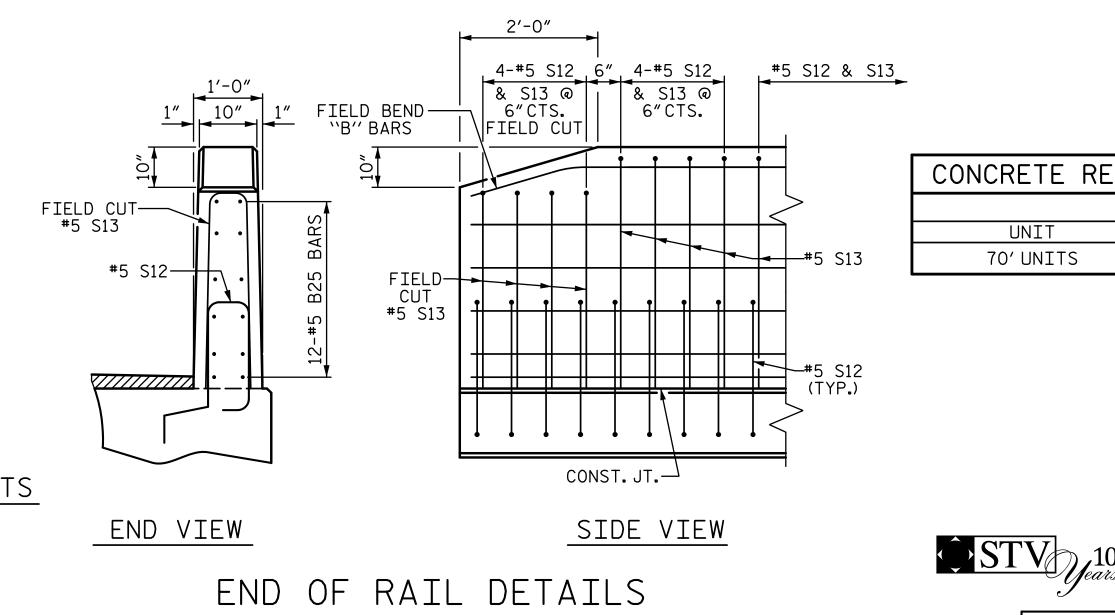
#5 S12 & 5 S13


	PROJECT NOB-58 UNION	BO1 _ COUNTY
	STATION: 13+80.00	-L-
	SHEET 2 OF 3	
CARO Solution EAL EAL EAL EAL EAL EAL EAL EAL EAL EAL	STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPOR RALEIGH PLAN OF 70' L 27'-10" CLEAR RC 90° SKEW	JNIT Dadway
_	REVISIONS	SHEET NO.
)		te: S-5
	1 <u>3</u> 2 <u>4</u>	total sheets 13

STV ENGINEERS, 900 West Trade St., Su Charlotte, NC 282 NC License Number F


MENT	NOT	CONSIDERED
FINAL	UNL	ESS ALL
GNATU	RES	COMPLETED

STD. NO. 24PCS_30_90S_70L

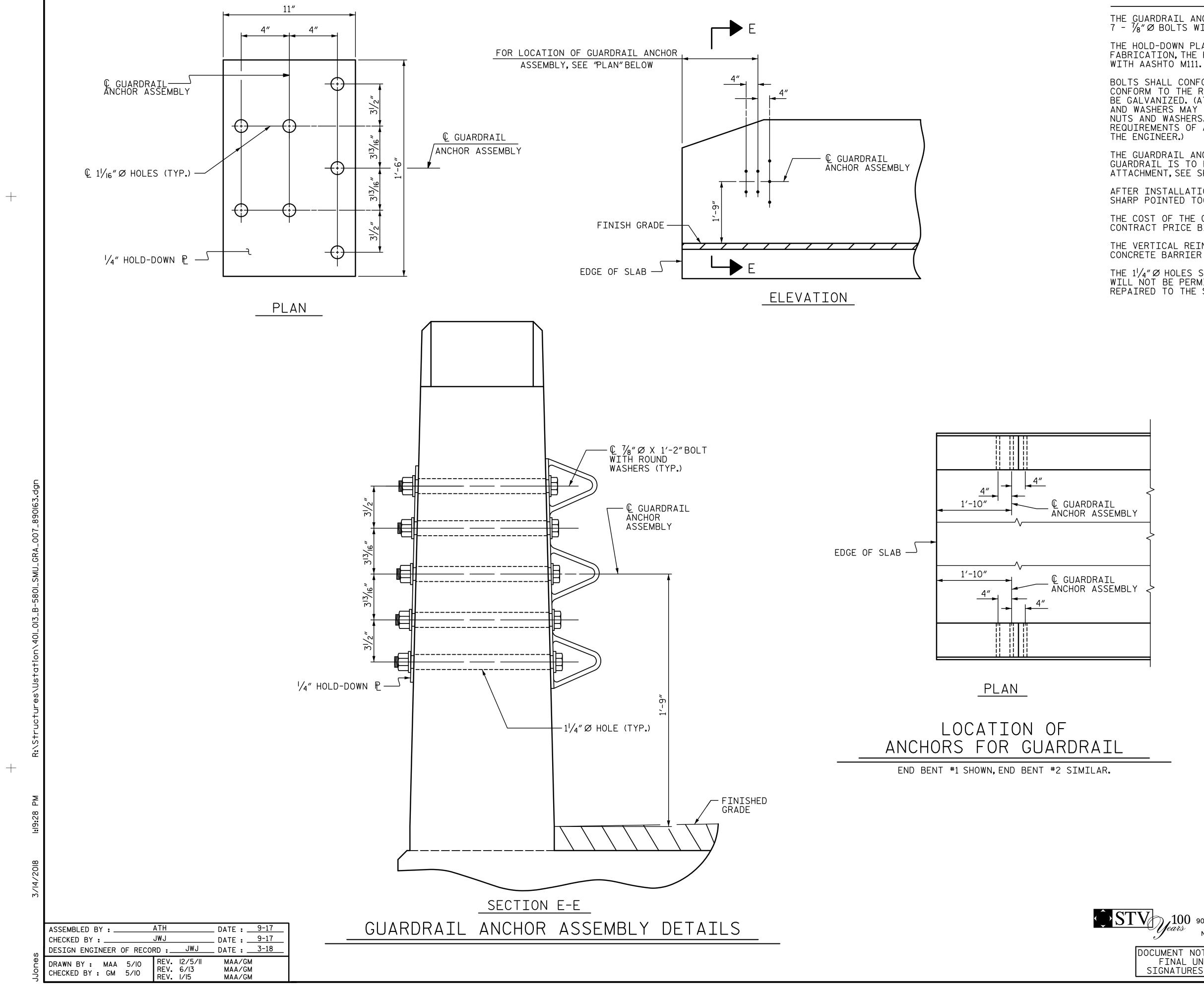

ELL OF MATERIAL FOR ONE 70' CORED SLAB UNIT										
		EXTERI	OR UNIT	INTERI	OR UNIT					
ZE	TYPE	LENGTH	WEIGHT	LENGTH	WEIGHT					
4	STR	24'-6"	98	24'-6″	98					
5	3	4'-9"	40	4'-9″	40					
4	3 3	5′-10″	561	5'-10″	561					
5	1	5'-10″	481							
4 5 4 5	3 3	5′-7″	15	5′-7″	15					
5	3	7'-1″	30	7'-1″	30					
EL	LBS	5.	744		744					
EEL	LBS	c	481							
	CU. YDS		11.8		11.8					
			11.0		11.0					
S	Nc).	28		28					
_										

GRADE 270 STRANDS					
	0.6″ØL.R.				
AREA (SQUARE INCHES)	0.217				
ULTIMATE STRENGTH (LBS.PER STRAND)	58,600				
APPLIED PRESTRESS (LBS.PER STRAND)	43,950				

70' UNIT	WEIGHT					
	4704					
	4704					
<u>₩B25</u> 72 72 # 5 STR 22'-11"	1721					
*S13 158 *5 2 7'-2"	1181					
* EPOXY COATED REINFORCING STEEL LBS.	2902					
CLASS AA CONCRETE CU.YDS.						
TOTAL VERTICAL CONCRETE BARRIER RAIL LN.FT.	140.25					

GUTTERLINE ASPH	HALT THICKNESS & RAI	L HEIGHT
	ASPHALT OVERLAY THICKNESS @ MID-SPAN	RAIL HEIGHT @ MID-SPAN
70' UNITS	1 ³ / ₄ " 3'-7 ³ / ₂	

NOTES


ALL PRESTRESSING STRANDS SHALL BE 7-WIRE LOW RELAXATION GRADE 270 STRANDS AND SHALL CONFORM TO AASHTO M203 EXCEPT FOR SAMPLING REQUIREMENTS WHICH SHALL BE IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS. ALL REINFORCING STEEL CAST WITH THE CORED SLAB SECTIONS SHALL BE GRADE 60 AND SHALL BE INCLUDED IN THE UNIT PRICE BID FOR PRESTRESSED CONCRETE CORED SLABS. RECESSES FOR TRANSVERSE STRANDS SHALL BE GROUTED AFTER THE TENSIONING OF THE STRANDS. THE 21/2" & DOWEL HOLES AT FIXED ENDS OF SLAB SECTIONS SHALL BE FILLED WITH NON-SHRINK GROUT. THE BACKER RODS SHALL CONFORM TO THE REQUIREMENTS OF TYPE M BOND BREAKER. SEE SECTION 1028 OF THE STANDARD SPECIFICATIONS. WHEN CORED SLABS ARE CAST, AN INTERNAL HOLD-DOWN SYSTEM SHALL BE EMPLOYED TO PREVENT VOIDS FROM RISING OR MOVING SIDEWAYS. AT LEAST SIX WEEKS PRIOR TO CASTING CORED SLABS, THE CONTRACTOR SHALL SUBMIT TO THE ENGINEER FOR REVIEW AND COMMENT, DETAILED DRAWINGS OF THE PROPOSED HOLD-DOWN SYSTEM. IN ADDITION TO STRUCTURAL DETAILS, LOCATION AND SPACING OF THE HOLD-DOWNS SHALL BE INDICATED. THE TRANSFER OF LOAD FROM THE ANCHORAGES TO THE CORED SLAB UNIT SHALL BE DONE WHEN THE CONCRETE HAS REACHED A COMPRESSIVE STRENGTH OF NOT LESS THAN THE REQUIRED STRENGTH SHOWN IN THE "CONCRETE RELEASE STRENGTH" TABLE. ALL REINFORCING STEEL IN VERTICAL CONCRETE BARRIER RAILS SHALL BE EPOXY COATED. PRESTRESSING STRANDS SHALL BE CUT FLUSH WITH THE CORED SLAB UNIT ENDS. APPLY EPOXY PROTECTIVE COATING TO CORED SLAB UNIT ENDS. GROOVED CONTRACTION JOINTS, $\frac{1}{2}$ " IN DEPTH, SHALL BE TOOLED IN ALL EXPOSED FACES OF THE BARRIER RAIL AND IN ACCORDANCE WITH ARTICLE 825-10(B) OF THE STANDARD SPECIFICATIONS. A CONTRACTION JOINT SHALL BE LOCATED AT EACH THIRD POINT BETWEEN BARRIER RAIL EXPANSION JOINTS. ONLY ONE CONTRACTION JOINT IS REQUIRED AT MIDPOINT OF BARRIER RAIL SEGMENTS LESS THAN 20 FEET IN LENGTH AND NO CONTRACTION JOINTS ARE REQUIRED FOR THOSE SEGMENTS LESS THAN 10 FEET IN LENGTH. FLAME CUTTING OF THE TRANSVERSE POST-TENSIONING STRAND IS NOT ALLOWED. MAINTAIN A SYMMETRIC TENSION FORCE BETWEEN EACH PAIR OF TRANSVERSE POST TENSIONING STRANDS IN THE DIAPHRAGM. THE #4 S11 STIRRUPS MAY BE SHIFTED AS NECESSARY TO MAINTAIN 1" CLEAR TO THE GROUTED RECESS. FOR GROUT FOR STRUCTURES, SEE SPECIAL PROVISIONS. THE PERMITTED THREADED INSERTS ARE DETAILED AS AN OPTION FOR THE CONTRACTOR TO ATTACH FALSEWORK AND FORMWORK DURING CONSTRUCTION. THE PERMITTED THREADED INSERTS IN THE EXTERIOR UNITS SHALL BE SIZED BY THE CONTRACTOR, SPACED AT 4'-O"CENTERS AND GALVANIZED IN ACCORDANCE WITH SECTION 1076 OF THE STANDARD SPECIFICATIONS. STAINLESS STEEL THREADED INSERTS MAY BE USED AS AN ALTERNATE. THE PERMITTED THREADED INSERTS SHALL BE GROUTED BY THE CONTRACTOR IMMEDIATELY FOLLOWING REMOVAL OF THE FALSEWORK. THE COST OF THE PERMITTED THREADED INSERTS SHALL BE INCLUDED IN THE PRICE BID FOR THE PRECAST UNITS. B-5801 PROJECT NO._ CONCRETE RELEASE STRENGTH UNION COLINITY PSI 5500

Docusioner an CARO BECTEGEORAFB44E SEAL O38640 SLEY JUILININ 3/14/2018
100 STV ENGINEERS, INC. 900 West Trade St., Suite 715 Charlotte, NC 28202
Vears Charlotte, NC 28202 NC License Number F-0991
DOCUMENT NOT CONSIDERED FINAL UNLESS ALL
SIGNATURES COMPLETED

UNIT

70' UNITS

TATION: 13+80.00 -L-							
HEET 3 OF 3							
PRES	DEPARTMENT OF TRANSPORTATION RALEIGH 3'-0"X 2'-0" PRESTRESSED CONCRETE CORED SLAB UNIT						
NO. BY:			_	DATE:	SHEET NO. S-6		
	DATE:	№. 3	BY:	DATE	TOTAL		
1		8 4			SHEETS 13		
STD. NO. 24PCS3_30_90S							

NOTES

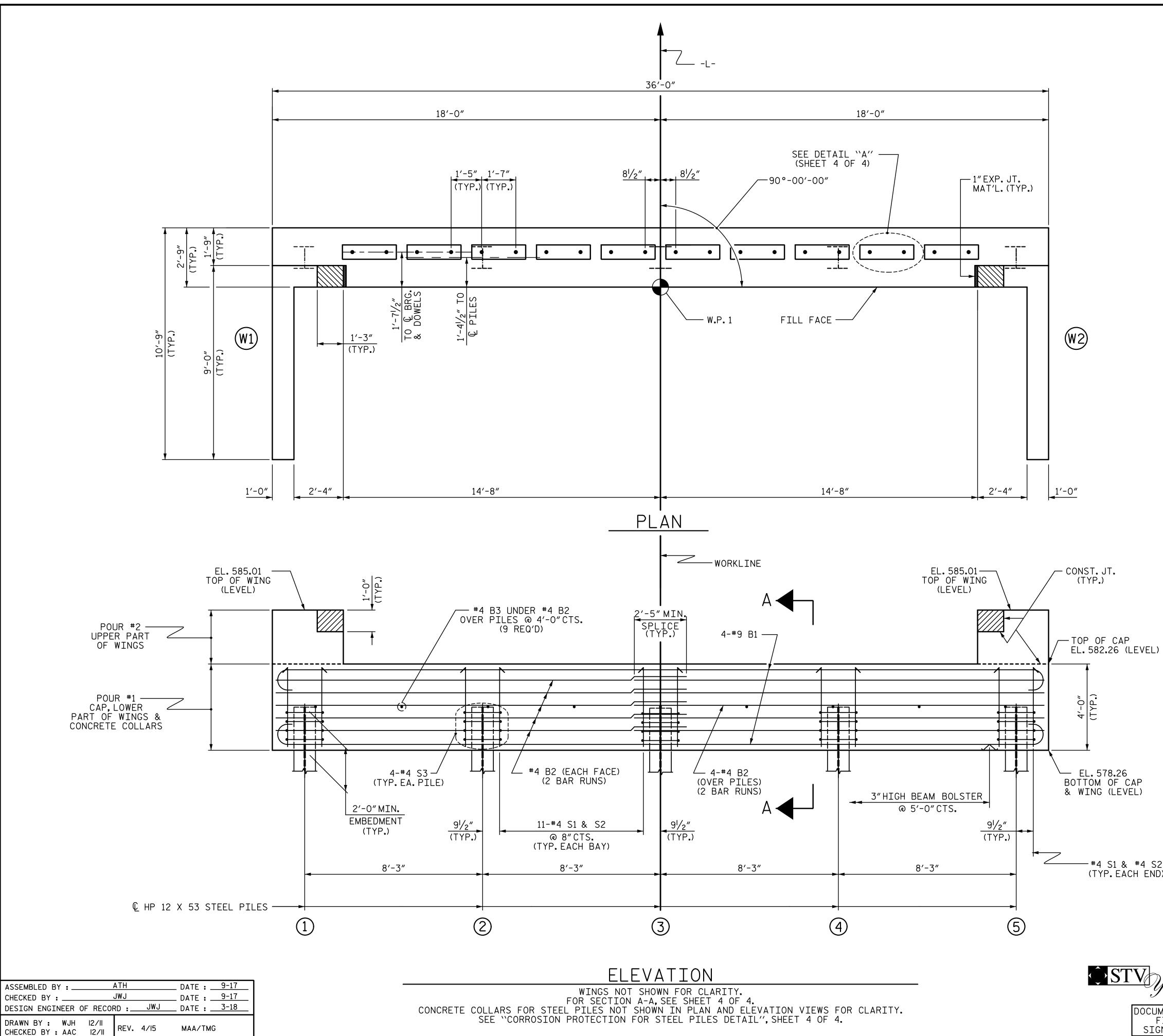
THE GUARDRAIL ANCHOR ASSEMBLY SHALL CONSIST OF A 1/4" HOLD DOWN PLATE AND 7 - 78" Ø BOLTS WITH NUTS AND WASHERS. THE HOLD-DOWN PLATE SHALL CONFORM TO AASHTO M270 GRADE 36. AFTER FABRICATION, THE HOLD-DOWN PLATE SHALL BE HOT-DIP GALVANIZED IN ACCORDANCE WITH AASHTO M111. BOLTS SHALL CONFORM TO THE REQUIREMENTS OF ASTM A307 AND NUTS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M291. BOLTS, NUTS AND WASHERS SHALL BE GALVANIZED. (AT THE CONTRACTOR'S OPTION, STAINLESS STEEL BOLTS, NUTS AND WASHERS MAY BE USED AS AN ALTERNATE FOR THE 1/8" Ø GALVANIZED BOLTS, NUTS AND WASHERS. THEY SHALL CONFORM TO OR EXCEED THE MECHANICAL REQUIREMENTS OF ASTM A307. THE USE OF THIS ALTERNATE SHALL BE APPROVED BY THE ENGINEER.)

THE GUARDRAIL ANCHOR ASSEMBLY IS REQUIRED AT ALL POINTS WHERE APPROACH GUARDRAIL IS TO BE ATTACHED TO THE END OF BARRIER RAIL. FOR POINTS OF ATTACHMENT, SEE SKETCH.

AFTER INSTALLATION, THE EXPOSED THREAD OF THE BOLT SHALL BE BURRED WITH A SHARP POINTED TOOL.

THE COST OF THE GUARDRAIL ANCHOR ASSEMBLY SHALL BE INCLUDED IN THE UNIT CONTRACT PRICE BID FOR VERTICAL CONCRETE BARRIER RAIL.

THE VERTICAL REINFORCING BARS MAY BE SHIFTED SLIGHTLY IN THE VERTICAL CONCRETE BARRIER RAIL TO CLEAR ASSEMBLY BOLTS.


THE $1^{1}/_{4}^{\prime\prime} \varnothing$ holes shall be formed or drilled with a core bit. Impact tools will not be permitted. Any concrete damaged by this work shall be repaired to the satisfaction of the engineer.

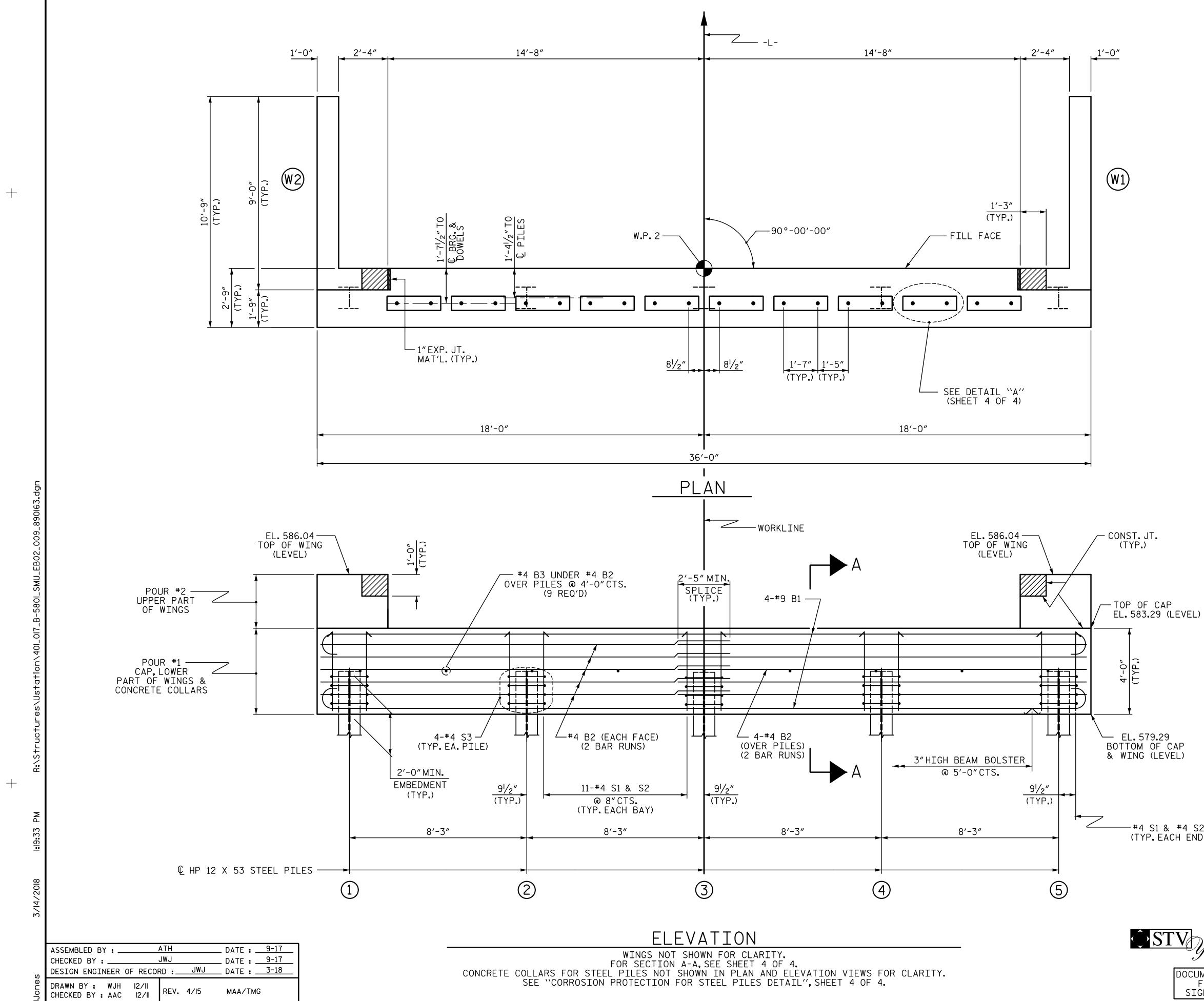
SKETCH SHOWING POINTS OF ATTACHMENTS

* DENOTES GUARDRAIL ANCHOR ASSEMBLY

	PROJECT NO. UNIO STATION:		COUNTY
100 STV ENGINEERS, INC. 900 West Trade St., Suite 715 Charlotte, NC 28202 NC License Number F-0991 MENT NOT CONSIDERED INAL UNLESS ALL NATURES COMPLETED	DEPARTMENT	RALEIGH TANDARD IL ANCH FOR VEF BARRIE	ORAGE RTICAL R RAIL
		STD. NO. G	RA3

+

NOTES

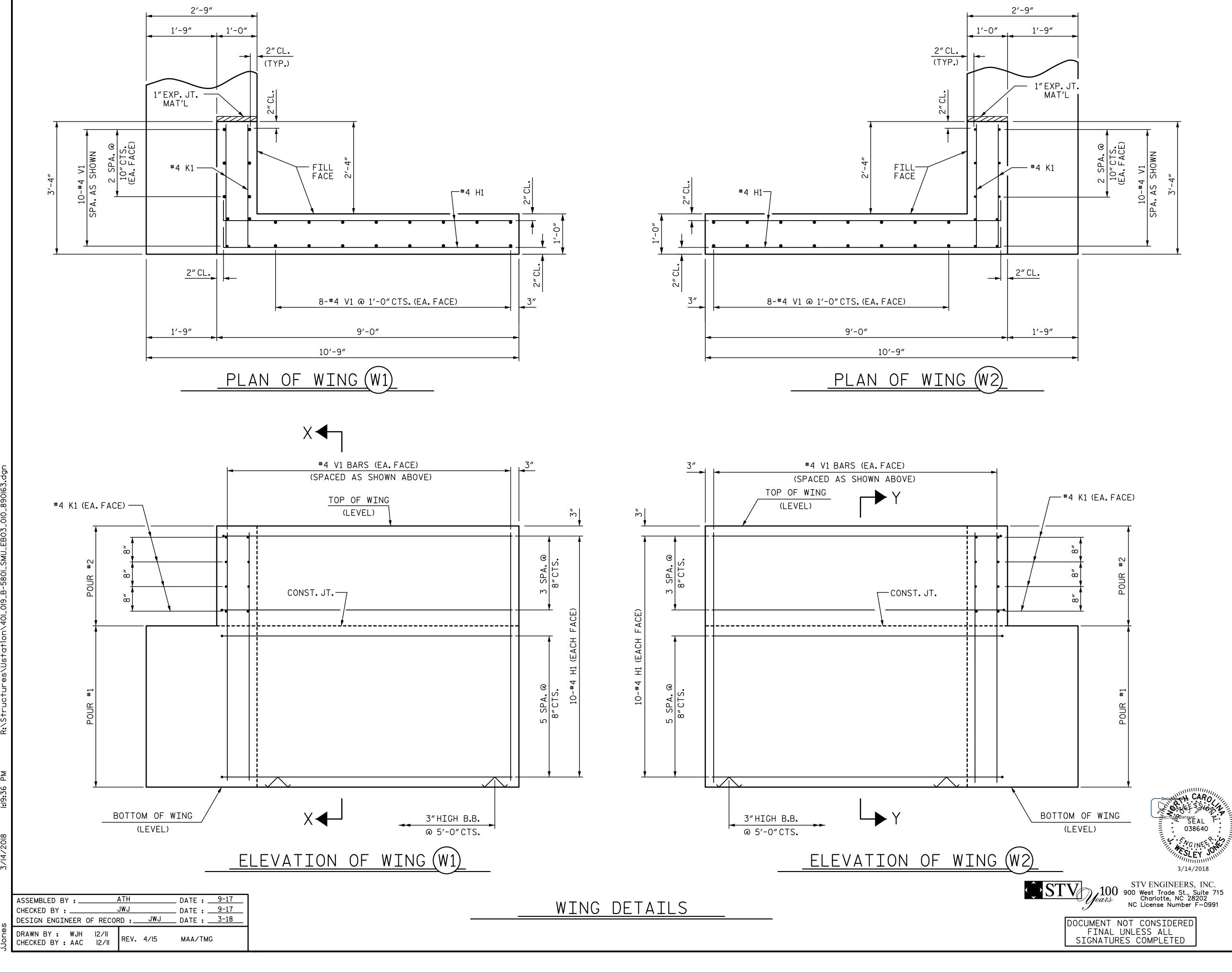

STIRRUPS IN CAP MAY BE SHIFTED AS NECESSARY TO CLEAR DOWELS.

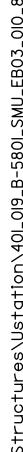
THE CONCRETE IN THE SHADED AREA OF THE WING SHALL BE POURED AFTER THE VERTICAL CONCRETE BARRIER RAIL IS CAST IF SLIP FORMING IS USED.

FOR PILE SPLICE DETAILS, SEE SHEET 4 OF 4. FOR WING DETAILS, SEE SHEET 3 OF 4.

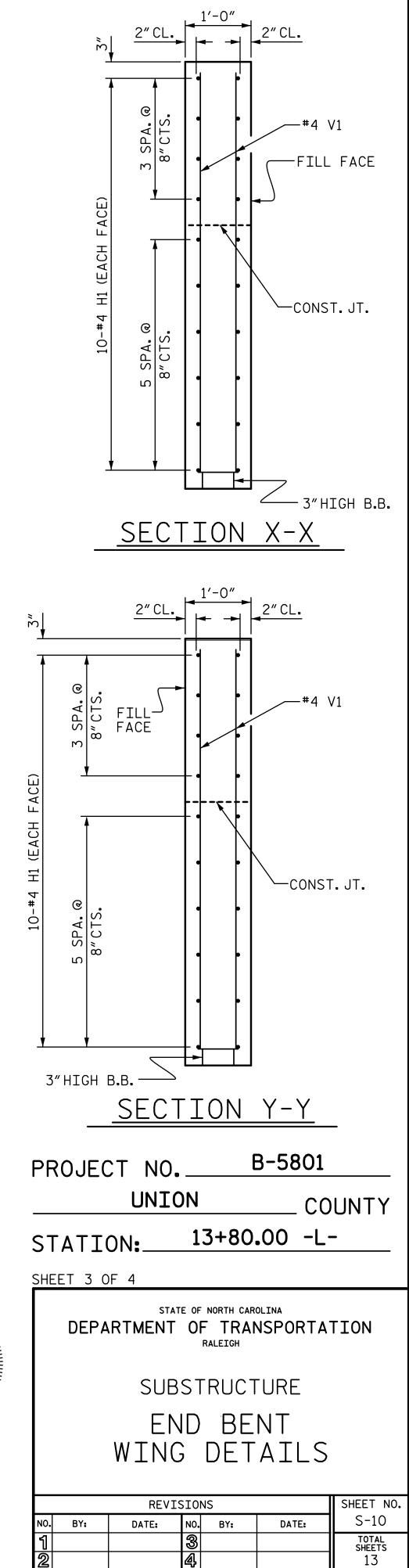
	PROJECT NOB-5 UNION	5801 _ COUNTY
	STATION: 13+80.00 SHEET 1 OF 4) -L-
Docusional AA CARO	STATE OF NORTH CAROLINA DEPARTMENT OF TRANSP RALEIGH	ORTATION
O38640	SUBSTRUCTUR	E
3/14/2018 STV ENGINEERS, INC. 900 West Trade St., Suite 715 Charlotte, NC 28202 NC License Number F-0991	END BENT N	0.1
	REVISIONS	SHEET NO.
JMENT NOT CONSIDERED		ATE: S-8
FINAL UNLESS ALL GNATURES COMPLETED	1 3 2 4	total sheets 13

STD.NO.EB_30_90S4

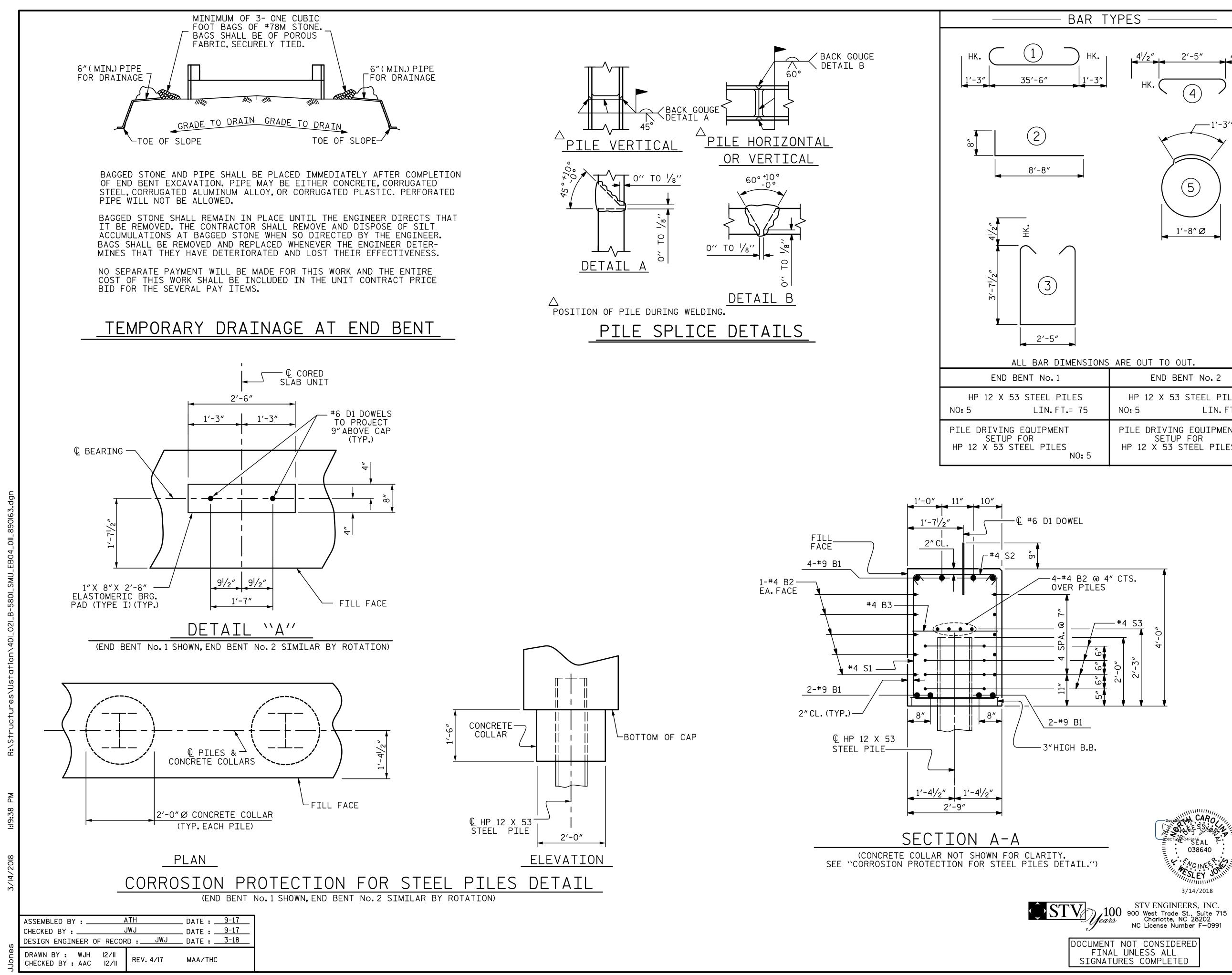

NOTES


STIRRUPS IN CAP MAY BE SHIFTED AS NECESSARY TO CLEAR DOWELS.

THE CONCRETE IN THE SHADED AREA OF THE WING SHALL BE POURED AFTER THE VERTICAL CONCRETE BARRIER RAIL IS CAST IF SLIP FORMING IS USED.


FOR PILE SPLICE DETAILS, SEE SHEET 4 OF 4. FOR WING DETAILS, SEE SHEET 3 OF 4.

	PROJECT NO. UNIC		
			COUNTY
	STATION:	13+80.00	-L-
	SHEET 2 OF 4		
Docusineday: CARO	DEPARTMENT	e of north carolina OF TRANSPO Raleigh	RTATION
O38640	SUB	STRUCTURE	-
3/14/2018 STV ENGINEERS, INC.	END E	BENT No	. 2
100 900 West Trade St., Suite 715 Charlotte, NC 28202 NC License Number F-0991			
NC License Number F-0991	REVIS	SIONS	SHEET NO.
IMENT NOT CONSIDERED FINAL UNLESS ALL	NO. BY: DATE:	NO. BY: DAT	
GNATURES COMPLETED	1	3 4	TOTAL SHEETS 13
	STD.	NO.EB_30_90S	54

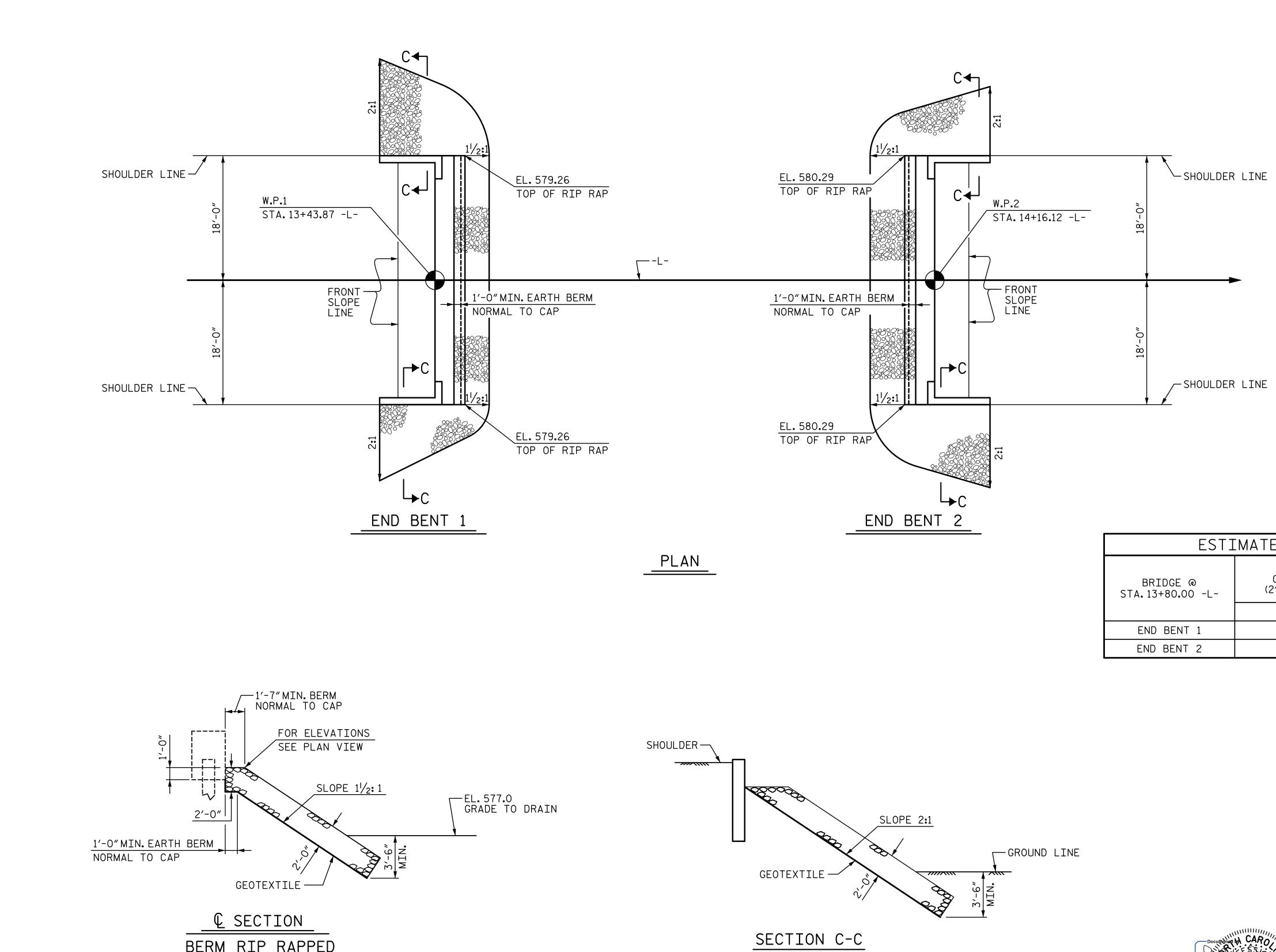


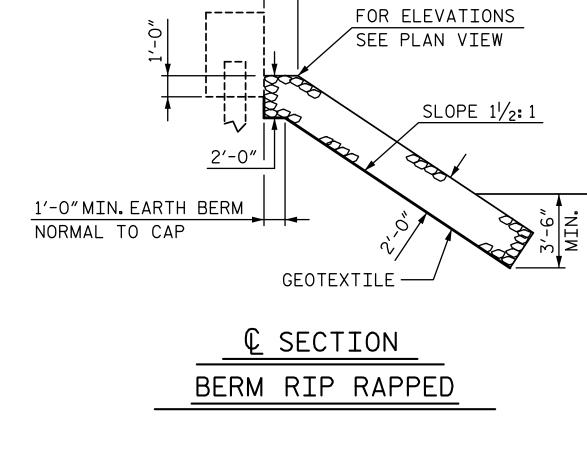
+

STD. NO. EB_30_90S4

+

<u> </u>	VDEC		<u> </u>				1
≺	YPES					ATERIA	
			FOF		· <u> </u>		
HK.	$4^{1/2}$ 2'-5" $4^{1/2}$	BAR B1	NO. 8	SIZE #9	TYPE 1	LENGTH 38'-0"	WEIGHT 1034
		B2	28	#4	STR	<u> </u>	357
-3″	' нк. (<u>4</u>) нк. '	B3	9	#4	STR	2'-5"	15
		D1	20	#6	STR	1'-6″	45
	1'-3'' LAP	, Н1	40	#4	2	9'-4"	249
		K1	16	#4	STR	2'-11"	31
		S1	46	#4	3	10'-5"	320
	((5))	S2	46	#4	4	3'-2"	97
		<u>S3</u>	20	#4	5	6'-6"	87
	1'-8"Ø	V1	52	#4	STR	6'-2″	214
			NFORCIN ONE E				2449 LBS.
			SS A CO		E BREA	AKDOWN	
		POUF				RT COLLARS	17.9 C.Y.
IONS	ARE OUT TO OUT.	POUF		PPER F INGS	ART O	F	2.3 C.Y.
	END BENT No.2						
	HP 12 X 53 STEEL PILES NO: 5 LIN.FT.= 75	5 тот,	AL CLAS	SS A C	ONCRE ⁻	TE	20.2 C.Y.
	PILE DRIVING EQUIPMENT						
5	SETUP FOR HP 12 X 53 STEEL PILES NO:	Б					
@ 4 LES % % % % % % % % % % % % % % % % % % %	" CTS. - #4 S3 0-,4 "0-,2 "2-,2						
		PROJEC			E	8-5801	
Β.		STATI		<u>ION</u> 13	+80.	CO .00 -L-	UNTY -
		SHEET 4 C					
	Docusioned St. CARO	DEPA	RTMEN			ISPORTA	TION
	038640		SL	JBSTI	RUCT	URE	


SUBSTRUCTURE


SLEY JOINT

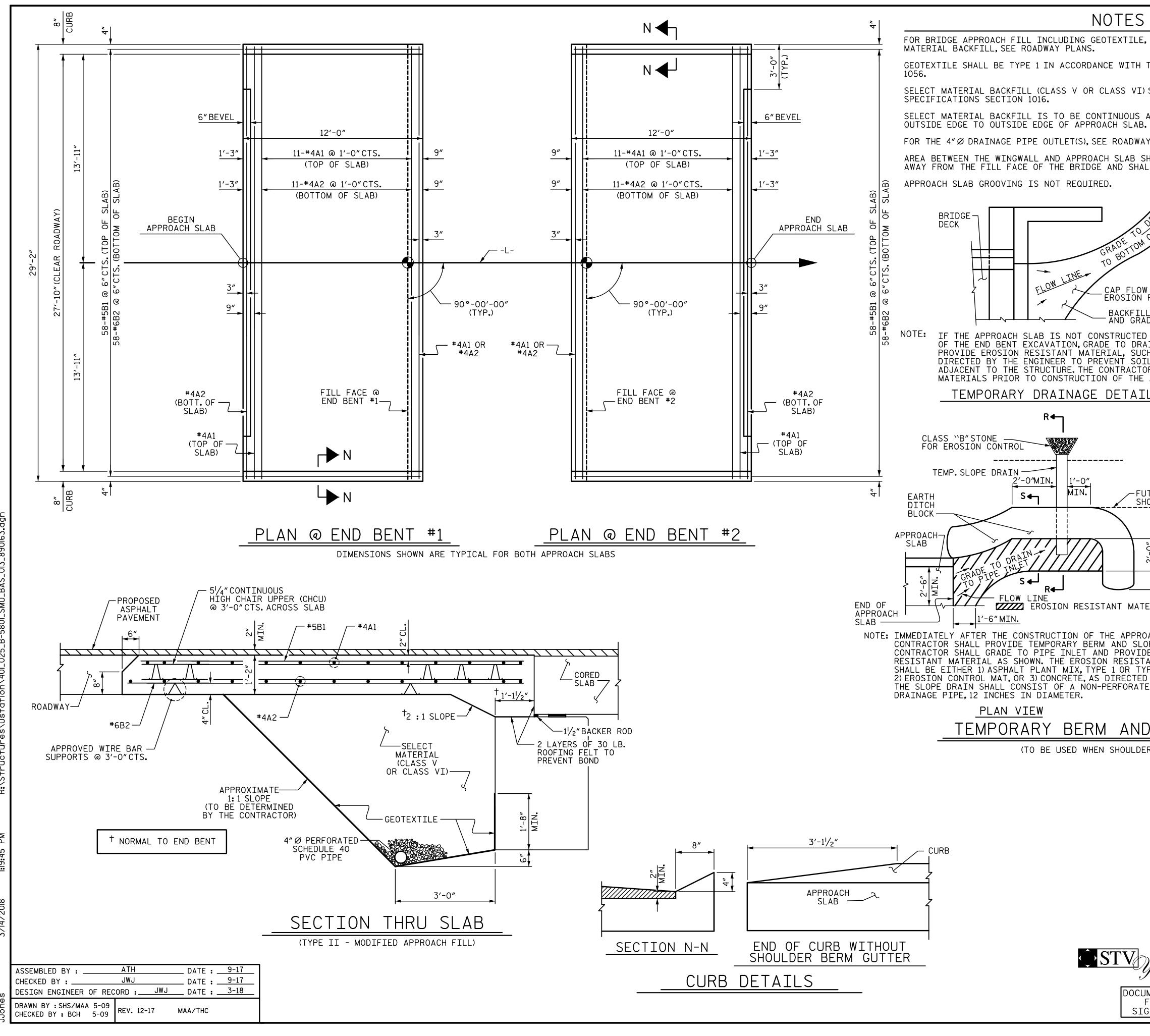
3/14/2018

END BENT No.1 & 2 DETAILS

		SHEET NO.				
NO.	BY:	DATE:	NO.	BY:	DATE:	S-11
1			3			TOTAL SHEETS
2			A			13
STD. NO. EB_30_90S4						

S	DRAWN BY :	ATH		_ DATE : _	9-17
РС	CHECKED BY :	JWJ		_ DATE : _	9-17
Juones	DESIGN ENGINEER O	F RECORD :	JMJ	_ DATE : _	3-18
- (

+


ESTIMATED QUANTITIES							
RIP RAP CLASS II (2'-0" THICK)	GEOTEXTILE FOR DRAINAGE						
TONS	SQUARE YARDS						
80	90						
90	100						
	RIP RAP CLASS II (2'-O" THICK) TONS 80						

	PROJE						
		UNTY					
	STATION: 13+80.00 -L-						
	STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH						
	R	IP R	AP DI	ETAIL	_S		
C. 715							
91		SHEET NO. S-12					
	NO. ВҮ: 1	DATE:	NO. BY:	DATE:	TOTAL		
	2		<u>ଅ</u>		SHEETS 13		

STV ENGINEERS, INC. 900 West Trade St., Suite 7 Charlotte, NC 28202 NC License Number F-0991

IMENT	NOT	CONSIDERED
FINAL	UNL	ESS ALL
GNATU	RES	COMPLETED

+

		BI	ill C	DF MA	ATERIAL	-
E, 4″Ø DRAINAGE PIPE, AND SELECT		1		1	B AT E	1
THE STANDARD SPECIFICATIONS SECTION	BAR * A1 A2	NO. 13 13	SIZE #4 #4	TYPE STR STR	LENGTH 28'-10" 28'-10"	WEIGHT 250 250
) SHALL BE IN ACCORDANCE WITH STANDARD	* B1	58	#5	STR	11'-2"	676
ALONG FILL FACE OF BACKWALL FROM	+ B1 B2	58	#5 #6	STR	11'-2"	1016
AY STANDARD DRAWINGS.			IG STEE	EL	LBS.	1266
SHALL BE GRADED TO DRAIN THE WATER		XY CO NFORC	ATED ING ST	EEL	LBS.	926
ALL BE PAVED.SEE ROADWAY PLANS.	CLASS	S AA C	ONCRE	ΓE	C. Y.	17.7
	A	PPRC	ACH	SLAE	3 AT EE	3 #2
AN AL	BAR * A1	NO.	SIZE #4	TYPE STR	LENGTH 28'-10"	WEIGHT 250
DRATE SH	A1 A2	13	#4	STR	28'-10"	250
N .	₩ B1	58	#5	STR	11'-2″	676
	B2	58	#6	STR	11'-8″	1016
W LINE ONLY WITH I RESISTANT MATERIAL			IG STEE	EL	LBS.	1266
LL EXCAVATION HOLE ADE TO DRAIN		XY CO NFORC	ATED ING ST	EEL	LBS.	926
D IMMEDIATELY AFTER THE BACKFILLING	CLASS	S AA C	ONCRE	ΓE	C. Y.	17.7
CAIN TO THE BOTTOM OF THE SLOPE AND CH AS FIBERGLASS ROVING OR AS						
IL EROSION AND TO PROTECT THE AREA OR WILL BE REQUIRED TO REMOVE THESE E APPROACH SLAB.		Г	- -	-		
IL				1		IS
<u> </u>			BAR SIZE	EPO COAT	ED UNCOA	TED
ELBOW			#4	2'-	0″ 1′-9)″
	ſ	ļ	#5	2'-		
			#6	3'-:	10" 2'-	7″
	W					
UTURE HOULDER TOE OF FILL						
CLASS ``B"STONE						
FOR EROSION CONTR						
N I I I I I I I I I I I I I I I I I I I	- ESISTAI	NT				
() MATERIAL OVE	ER PIPI ARTH D		BLOCK			
	12″					
	'					
OACH SLAB, THE	\searrow					
DE EROSION TANT MATERIAL 4'-0"MTN		\backslash				
YPE 2, MIN. 2" DEPTH,	∠ FIL	L SLO	PE			
TED TEMPORARY <u>SECTION S-</u>	·S					
D SLOPE DRAIN DETAI	L2					
ER BERM GUTTER IS REQUIRED)	JEC.	τ Ν	D .	E	3-5801	
		UN:	ION		CO	UNTY
	TIO	N•	13	5+80.	.00 -L-	
JTA		• • •				
DEPARTMENT OF TRANSPORTATION						
SEAL STANDARD						
BRIDGE APPROACH SLAB						
FSLEY JONNIN F	OR F	PRES	TRE	SSED	CONCF	
3/14/2018					UNIT _ TIER	}
STV ENGINEERS, INC. 900 West Trade St., Suite 715 Charlotte, NC 28202	()	ו־מטי		SKE		/
<i>Jears</i> Charlotte, NC 28202 NC License Number F-0991		RE	VISIONS			SHEET NO.
	BY:	DATE:	N0.	BY:	DATE:	S-13 total
FINAL UNLESS ALL IGNATURES COMPLETED 2			3 4			total sheets 13
		ст		RAS	30 905	

STD. NO. BAS_30_90S

DESIGN DATA:

SPECIFICATIONS	A.A.S.H.T.O. (CURRENT)
LIVE LOAD	SEE PLANS
IMPACT ALLOWANCE	SEE A.A.S.H.T.O.
STRESS IN EXTREME FIBER OF STRUCTURAL STEEL - AASHTO M270 GRADE 36	20,000 LBS.PER SQ.IN.
- AASHTO M270 GRADE 50W	27,000 LBS.PER SQ.IN.
- AASHTO M270 GRADE 50	27,000 LBS.PER SQ.IN.
REINFORCING STEEL IN TENSION - GRADE 60	24,000 LBS.PER SQ.IN.
CONCRETE IN COMPRESSION	1,200 LBS.PER SQ.IN.
CONCRETE IN SHEAR	SEE A.A.S.H.T.O.
STRUCTURAL TIMBER - TREATED OR UNTREATED EXTREME FIBER STRESS	1,800 LBS.PER SQ.IN.
COMPRESSION PERPENDICULAR TO GRAIN OF TIMBER	375 LBS.PER SQ.IN.
EQUIVALENT FLUID PRESSURE OF EARTH	30 LBS.PER CU.FT. (MINIMUM)

MATERIAL AND WORKMANSHIP:

EXCEPT AS MAY OTHERWISE BE SPECIFIED ON PLANS OR IN THE SPECIAL PROVISIONS, ALL MATERIAL AND WORKMANSHIP SHALL BE IN ACCORDANCE WITH THE 2018 "STANDARD SPECIFICATIONS FOR ROADS AND STRUCTURES" OF THE N. C. DEPARTMENT OF TRANSPORTATION.

STEEL SHEET PILING FOR PERMANENT OR TEMPORARY APPLICATIONS SHALL BE HOT ROLLED.

CONCRETE:

UNLESS OTHERWISE REQUIRED ON PLANS, CLASS A CONCRETE SHALL BE USED FOR ALL PORTIONS OF ALL STRUCTURES WITH THE EXCEPTION THAT: CLASS AA CONCRETE SHALL BE USED IN BRIDGE SUPERSTRUCTURES, ABUTMENT BACKWALLS. AND APPROACH SLABS: AND CLASS B CONCRETE SHALL BE USED FOR SLOPE PROTECTION AND RIP RAP.

CONCRETE CHAMFERS:

UNLESS OTHERWISE NOTED ON THE PLANS, ALL EXPOSED CORNERS ON STRUCTURES SHALL BE CHAMFERED $\frac{3}{4}$ "WITH THE FOLLOWING EXCEPTIONS: TOP CORNERS OF CURBS MAY BE ROUNDED TO 11/2" RADIUS WHICH IS BUILT INTO CURB FORMS; CORNERS OF TRANSVERSE FLOOR EXPANSION JOINTS SHALL BE ROUNDED WITH A 1/4" FINISHING TOOL UNLESS OTHERWISE REQUIRED ON PLANS; AND CORNERS OF EXPANSION JOINTS IN THE ROADWAY FACES AND TOPS OF CURBS AND SIDEWALKS SHALL BE ROUNDED TO A $\frac{1}{4}$ RADIUS WITH A FINISHING STONE OR TOOL UNLESS OTHERWISE REQUIRED ON PLANS.

DOWELS:

DOWELS WHEN INDICATED ON PLANS AS FOR CULVERT EXTENSIONS, SHALL BE EMBEDDED AT LEAST 12" INTO THE OLD CONCRETE AND GROUTED INTO PLACE WITH 1:2 CEMENT MORTAR.

STANDARD NOTES

ALLOWANCE FOR DEAD LOAD DEFLECTION, SETTLEMENT, ETC. IN CASTING SUPERSTRUCTURES:

BRIDGES SHALL BE BUILT ON THE GRADE OR VERTICAL CURVE SHOWN ON PLANS. SLABS, CURBS AND PARAPETS SHALL CONFORM TO THE GRADE OR CURVE.

ALL DIMENSIONS WHICH ARE GIVEN IN SECTION AND ARE AFFECTED BY DEAD LOAD DEFLECTIONS ARE DIMENSIONS AT CENTER LINE OF BEARING UNLESS OTHERWISE NOTED ON PLANS. IN SETTING FORMS FOR STEEL BEAM BRIDGES AND PRESTRESSED CONCRETE GIRDER BRIDGES, ADJUSTMENTS SHALL BE MADE DUE TO THE DEAD LOAD DEFLECTIONS FOR THE ELEVATIONS SHOWN. WHERE BLOCKS ARE SHOWN OVER BEAMS FOR BUILDING UP TO THE SLAB, THE VERTICAL DIMENSIONS OF THE BLOCKS SHALL BE ADJUSTED BETWEEN BEARINGS TO COMPENSATE FOR DEAD LOAD DEFLECTIONS, VERTICAL CURVE ORDINATE, AND ACTUAL BEAM CAMBER. WHERE BOTTOM OF SLAB IS IN LINE WITH BOTTOM OF TOP FLANGES, DEPTH OF SLAB BETWEEN BEARINGS SHALL BE ADJUSTED TO COMPENSATE FOR DEAD LOAD DEFLECTION. VERTICAL CURVE ORDINATE. AND ACTUAL BEAM CAMBER.

IN SETTING FALSEWORK AND FORMS FOR REINFORCED CONCRETE SPANS, AN ALLOWANCE SHALL BE MADE FOR DEAD LOAD DEFLECTIONS, SETTLEMENT OF FALSEWORK, AND PERMANENT CAMBER WHICH SHALL BE PROVIDED FOR IN ADDITION TO THE ELEVATIONS SHOWN. AFTER REMOVAL OF THE FALSEWORK, THE FINISHED STRUCTURES SHALL CONFORM TO THE PROFILE AND ELEVATIONS SHOWN ON THE PLANS AND CONSTRUCTION ELEVATIONS FURNISHED BY THE ENGINEER.

DETAILED DRAWINGS FOR FALSEWORK OR FORMS FOR BRIDGE SUPERSTRUCTURE AND ANY STRUCTURE OR PARTS OF A STRUCTURE AS NOTED ON THE PLANS SHALL BE SUBMITTED TO THE ENGINEER FOR APPROVAL BEFORE CONSTRUCTION OF THE FALSEWORK OR FORMS IS STARTED.

REINFORCING STEEL:

ALL REINFORCING STEEL SHALL BE DEFORMED. DIMENSIONS RELATIVE TO PLACEMENT OF REINFORCING ARE TO CENTERS OF BARS UNLESS OTHERWISE INDICATED IN THE PLANS. DIMENSIONS ON BAR DETAILS ARE TO CENTERS OF BARS OR ARE OUT TO OUT AS INDICATED ON PLANS.

WIRE BAR SUPPORTS SHALL BE PROVIDED FOR REINFORCING STEEL WHERE INDICATED ON THE PLANS. WHEN BAR SUPPORT PIECES ARE PLACED IN CONTINUOUS LINES, THEY SHALL BE SO PLACED THAT THE ENDS OF THE SUPPORTING WIRES SHALL BE LAPPED TO LOCK LEGS ON ADJOINING PIECES.

STRUCTURAL STEEL:

AT THE CONTRACTOR'S OPTION, HE MAY SUBSTITUTE $\frac{7}{8}$ " Ø SHEAR STUDS FOR THE $\frac{3}{4}$ " Ø STUDS SPECIFIED ON THE PLANS. THIS SUBSTITUTION SHALL BE MADE AT THE RATE OF 3 - $\frac{7}{8}$ "ø studs for 4 - $\frac{3}{4}$ "ø studs, and stud spacing changes SHALL BE MADE AS NECESSARY TO PROVIDE THE SAME EQUIVALENT NUMBER OF $\frac{7}{8}$ " Ø STUDS ALONG THE BEAM AS SHOWN FOR 3/4" Ø STUDS BASED ON THE RATIO OF 3 - 1/8" Ø STUDS FOR 4 - $\frac{3}{4}$ " Ø STUDS. STUDS OF THE LENGTH SPECIFIED ON THE PLANS MUST BE PROVIDED. THE MAXIMUM SPACING SHALL BE 2'-O".

EXCEPT AT THE INTERIOR SUPPORTS OF CONTINUOUS BEAMS WHERE THE COVER PLATE IS IN CONTACT WITH BEARING PLATE. THE CONTRACTOR MAY. AT HIS OPTION. SUBSTITUTE FOR THE COVER PLATES DESIGNATED ON THE PLANS COVER PLATES OF THE EQUIVALENT AREA PROVIDED THESE PLATES ARE AT LEAST $\frac{5}{6}$ IN THICKNESS AND DO NOT EXCEED A WIDTH EQUAL TO THE FLANGE WIDTH LESS 2"OR A THICKNESS EQUAL TO 2 TIMES THE FLANGE THICKNESS. THE SIZE OF FILLET WELDS SHALL CONFORM TO THE REQUIREMENTS OF THE CURRENT ANSI/AASHTO/AWS "BRIDGE WELDING CODE". ELECTROSLAG WELDING WILL NOT BE PERMITTED.

WITH THE SOLE EXCEPTION OF EDGES AT SURFACES WHICH BEAR ON OTHER SURFACES.ALL SHARP EDGES AND ENDS OF SHAPES AND PLATES SHALL BE SLIGHTLY ROUNDED BY SUITABLE MEANS TO A RADIUS OF APPROXIMATELY VIGINCH OR EQUIVALENT FLAT SURFACE AT A SUITABLE ANGLE PRIOR TO PAÍNTING, GALVANIZING, OR METALLIZING.

METAL STANDARDS AND FACES OF THE CONCRETE END POSTS FOR THE METAL RAIL SHALL BE SET NORMAL TO THE GRADE OF THE CURB. UNLESS OTHERWISE SHOWN ON PLANS. THE METAL RAIL AND TOPS OF CONCRETE POSTS USED WITH THE ALUMINUM RAIL SHALL BE BUILT PARALLEL TO THE GRADE OF THE CURB.

METAL HANDRAILS SHALL BE IN ACCORDANCE WITH THE PLANS. RAILS SHALL BE AS MANUFACTURED FOR BRIDGE RAILING. CASTINGS SHALL BE OF A UNIFORM APPEARANCE. FINS AND OTHER DEFORMATIONS RESULTING FROM CASTING OR OTHERWISE SHALL BE REMOVED IN A MANNER SO THAT A UNIFORM COLORING OF THE COMPLETED CASTING SHALL BE OBTAINED. CASTINGS WITH DISCOLORATIONS OR OF NON-UNIFORM COLORING WILL NOT BE ACCEPTED. CERTIFIED MILL REPORTS ARE REQUIRED FOR METAL RAILS AND POSTS.

SPECIAL NOTES:

GENERALLY, IN CASE OF DISCREPANCY, THIS STANDARD SHEET OF NOTES SHALL GOVERN OVER THE SPECIFICATIONS, BUT THE REMAINDER OF THE PLANS SHALL GOVERN OVER NOTES HEREON, AND SPECIAL PROVISIONS SHALL GOVERN OVER ALL. SEE SPECIFICATIONS ARTICLE 105-4.

HANDRAILS AND POSTS:

